\(\int (a+a \cos (c+d x))^2 (A+C \cos ^2(c+d x)) \sec (c+d x) \, dx\) [12]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 96 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=a^2 (2 A+C) x+\frac {a^2 A \text {arctanh}(\sin (c+d x))}{d}+\frac {a^2 (A+C) \sin (c+d x)}{d}+\frac {C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d}+\frac {C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d} \]

[Out]

a^2*(2*A+C)*x+a^2*A*arctanh(sin(d*x+c))/d+a^2*(A+C)*sin(d*x+c)/d+1/3*C*(a+a*cos(d*x+c))^2*sin(d*x+c)/d+1/3*C*(
a^2+a^2*cos(d*x+c))*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3125, 3055, 3047, 3102, 2814, 3855} \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {a^2 A \text {arctanh}(\sin (c+d x))}{d}+\frac {a^2 (A+C) \sin (c+d x)}{d}+a^2 x (2 A+C)+\frac {C \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d}+\frac {C \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d} \]

[In]

Int[(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

a^2*(2*A + C)*x + (a^2*A*ArcTanh[Sin[c + d*x]])/d + (a^2*(A + C)*Sin[c + d*x])/d + (C*(a + a*Cos[c + d*x])^2*S
in[c + d*x])/(3*d) + (C*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d)

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3125

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(
n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Si
mp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^
(-1)] && NeQ[m + n + 2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d}+\frac {\int (a+a \cos (c+d x))^2 (3 a A+2 a C \cos (c+d x)) \sec (c+d x) \, dx}{3 a} \\ & = \frac {C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d}+\frac {C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d}+\frac {\int (a+a \cos (c+d x)) \left (6 a^2 A+6 a^2 (A+C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{6 a} \\ & = \frac {C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d}+\frac {C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d}+\frac {\int \left (6 a^3 A+\left (6 a^3 A+6 a^3 (A+C)\right ) \cos (c+d x)+6 a^3 (A+C) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx}{6 a} \\ & = \frac {a^2 (A+C) \sin (c+d x)}{d}+\frac {C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d}+\frac {C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d}+\frac {\int \left (6 a^3 A+6 a^3 (2 A+C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{6 a} \\ & = a^2 (2 A+C) x+\frac {a^2 (A+C) \sin (c+d x)}{d}+\frac {C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d}+\frac {C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d}+\left (a^2 A\right ) \int \sec (c+d x) \, dx \\ & = a^2 (2 A+C) x+\frac {a^2 A \text {arctanh}(\sin (c+d x))}{d}+\frac {a^2 (A+C) \sin (c+d x)}{d}+\frac {C (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d}+\frac {C \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.51 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.14 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {a^2 \left (24 A d x+12 C d x-12 A \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+12 A \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+3 (4 A+7 C) \sin (c+d x)+6 C \sin (2 (c+d x))+C \sin (3 (c+d x))\right )}{12 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(a^2*(24*A*d*x + 12*C*d*x - 12*A*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 12*A*Log[Cos[(c + d*x)/2] + Sin[(c
 + d*x)/2]] + 3*(4*A + 7*C)*Sin[c + d*x] + 6*C*Sin[2*(c + d*x)] + C*Sin[3*(c + d*x)]))/(12*d)

Maple [A] (verified)

Time = 4.14 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.90

method result size
parallelrisch \(-\frac {\left (A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {\sin \left (2 d x +2 c \right ) C}{2}-\frac {\sin \left (3 d x +3 c \right ) C}{12}+\left (-A -\frac {7 C}{4}\right ) \sin \left (d x +c \right )-2 d x \left (A +\frac {C}{2}\right )\right ) a^{2}}{d}\) \(86\)
derivativedivides \(\frac {A \,a^{2} \sin \left (d x +c \right )+\frac {a^{2} C \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+2 A \,a^{2} \left (d x +c \right )+2 a^{2} C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+A \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a^{2} C \sin \left (d x +c \right )}{d}\) \(108\)
default \(\frac {A \,a^{2} \sin \left (d x +c \right )+\frac {a^{2} C \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+2 A \,a^{2} \left (d x +c \right )+2 a^{2} C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+A \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a^{2} C \sin \left (d x +c \right )}{d}\) \(108\)
parts \(\frac {A \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {\left (A \,a^{2}+a^{2} C \right ) \sin \left (d x +c \right )}{d}+\frac {a^{2} C \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3 d}+\frac {2 A \,a^{2} \left (d x +c \right )}{d}+\frac {2 a^{2} C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(115\)
risch \(2 a^{2} x A +a^{2} C x -\frac {i {\mathrm e}^{i \left (d x +c \right )} A \,a^{2}}{2 d}-\frac {7 i {\mathrm e}^{i \left (d x +c \right )} a^{2} C}{8 d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} A \,a^{2}}{2 d}+\frac {7 i {\mathrm e}^{-i \left (d x +c \right )} a^{2} C}{8 d}+\frac {A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}+\frac {\sin \left (3 d x +3 c \right ) a^{2} C}{12 d}+\frac {\sin \left (2 d x +2 c \right ) a^{2} C}{2 d}\) \(170\)
norman \(\frac {\left (2 A \,a^{2}+a^{2} C \right ) x +\left (2 A \,a^{2}+a^{2} C \right ) x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (8 A \,a^{2}+4 a^{2} C \right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (8 A \,a^{2}+4 a^{2} C \right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (12 A \,a^{2}+6 a^{2} C \right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {2 a^{2} \left (A +C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{2} \left (A +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {2 a^{2} \left (9 A +11 C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {2 a^{2} \left (9 A +17 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {A \,a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {A \,a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(273\)

[In]

int((a+cos(d*x+c)*a)^2*(A+C*cos(d*x+c)^2)*sec(d*x+c),x,method=_RETURNVERBOSE)

[Out]

-(A*ln(tan(1/2*d*x+1/2*c)-1)-A*ln(tan(1/2*d*x+1/2*c)+1)-1/2*sin(2*d*x+2*c)*C-1/12*sin(3*d*x+3*c)*C+(-A-7/4*C)*
sin(d*x+c)-2*d*x*(A+1/2*C))*a^2/d

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.99 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {6 \, {\left (2 \, A + C\right )} a^{2} d x + 3 \, A a^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, A a^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (C a^{2} \cos \left (d x + c\right )^{2} + 3 \, C a^{2} \cos \left (d x + c\right ) + {\left (3 \, A + 5 \, C\right )} a^{2}\right )} \sin \left (d x + c\right )}{6 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="fricas")

[Out]

1/6*(6*(2*A + C)*a^2*d*x + 3*A*a^2*log(sin(d*x + c) + 1) - 3*A*a^2*log(-sin(d*x + c) + 1) + 2*(C*a^2*cos(d*x +
 c)^2 + 3*C*a^2*cos(d*x + c) + (3*A + 5*C)*a^2)*sin(d*x + c))/d

Sympy [F]

\[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=a^{2} \left (\int A \sec {\left (c + d x \right )}\, dx + \int 2 A \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int A \cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int C \cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 2 C \cos ^{3}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int C \cos ^{4}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))**2*(A+C*cos(d*x+c)**2)*sec(d*x+c),x)

[Out]

a**2*(Integral(A*sec(c + d*x), x) + Integral(2*A*cos(c + d*x)*sec(c + d*x), x) + Integral(A*cos(c + d*x)**2*se
c(c + d*x), x) + Integral(C*cos(c + d*x)**2*sec(c + d*x), x) + Integral(2*C*cos(c + d*x)**3*sec(c + d*x), x) +
 Integral(C*cos(c + d*x)**4*sec(c + d*x), x))

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.11 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {12 \, {\left (d x + c\right )} A a^{2} - 2 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} C a^{2} + 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C a^{2} + 6 \, A a^{2} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 6 \, A a^{2} \sin \left (d x + c\right ) + 6 \, C a^{2} \sin \left (d x + c\right )}{6 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="maxima")

[Out]

1/6*(12*(d*x + c)*A*a^2 - 2*(sin(d*x + c)^3 - 3*sin(d*x + c))*C*a^2 + 3*(2*d*x + 2*c + sin(2*d*x + 2*c))*C*a^2
 + 6*A*a^2*log(sec(d*x + c) + tan(d*x + c)) + 6*A*a^2*sin(d*x + c) + 6*C*a^2*sin(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.86 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {3 \, A a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, A a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + 3 \, {\left (2 \, A a^{2} + C a^{2}\right )} {\left (d x + c\right )} + \frac {2 \, {\left (3 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 9 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}}}{3 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="giac")

[Out]

1/3*(3*A*a^2*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*A*a^2*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 3*(2*A*a^2 + C*
a^2)*(d*x + c) + 2*(3*A*a^2*tan(1/2*d*x + 1/2*c)^5 + 3*C*a^2*tan(1/2*d*x + 1/2*c)^5 + 6*A*a^2*tan(1/2*d*x + 1/
2*c)^3 + 8*C*a^2*tan(1/2*d*x + 1/2*c)^3 + 3*A*a^2*tan(1/2*d*x + 1/2*c) + 9*C*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/
2*d*x + 1/2*c)^2 + 1)^3)/d

Mupad [B] (verification not implemented)

Time = 1.22 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.66 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {A\,a^2\,\sin \left (c+d\,x\right )}{d}+\frac {7\,C\,a^2\,\sin \left (c+d\,x\right )}{4\,d}+\frac {4\,A\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,A\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,C\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {C\,a^2\,\sin \left (2\,c+2\,d\,x\right )}{2\,d}+\frac {C\,a^2\,\sin \left (3\,c+3\,d\,x\right )}{12\,d} \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^2)/cos(c + d*x),x)

[Out]

(A*a^2*sin(c + d*x))/d + (7*C*a^2*sin(c + d*x))/(4*d) + (4*A*a^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/
d + (2*A*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*C*a^2*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x
)/2)))/d + (C*a^2*sin(2*c + 2*d*x))/(2*d) + (C*a^2*sin(3*c + 3*d*x))/(12*d)